2012 SWFSC/AFRF Collaborative Efforts

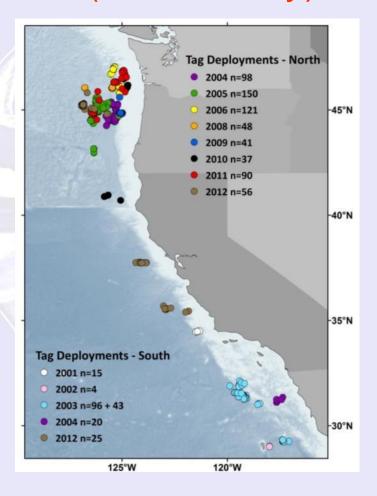
- Archival Tagging/Hawaii PAT tagging
- Biological Sampling
- Electronic Logbooks (lack of)
- Onboard Length Frequency

Archival Tagging

Deployments to Date - 801 Archival (+ 43 Dummy)
Recoveries to Date - 23 Archival (+ 6 Dummy)

Oregon / Washington/ No. CA

Total Deployed North: 641

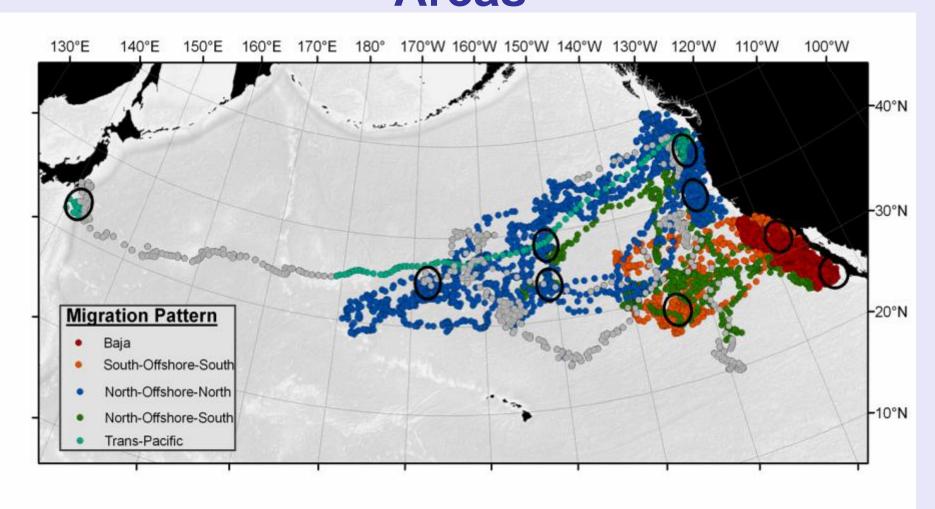

12 Recovered

Southern CA / Northern Baja

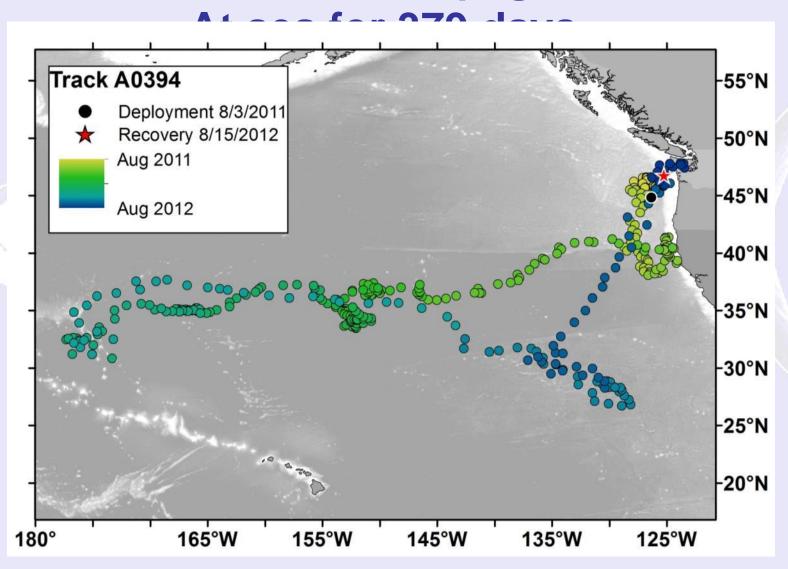
Total Deployed South: 203

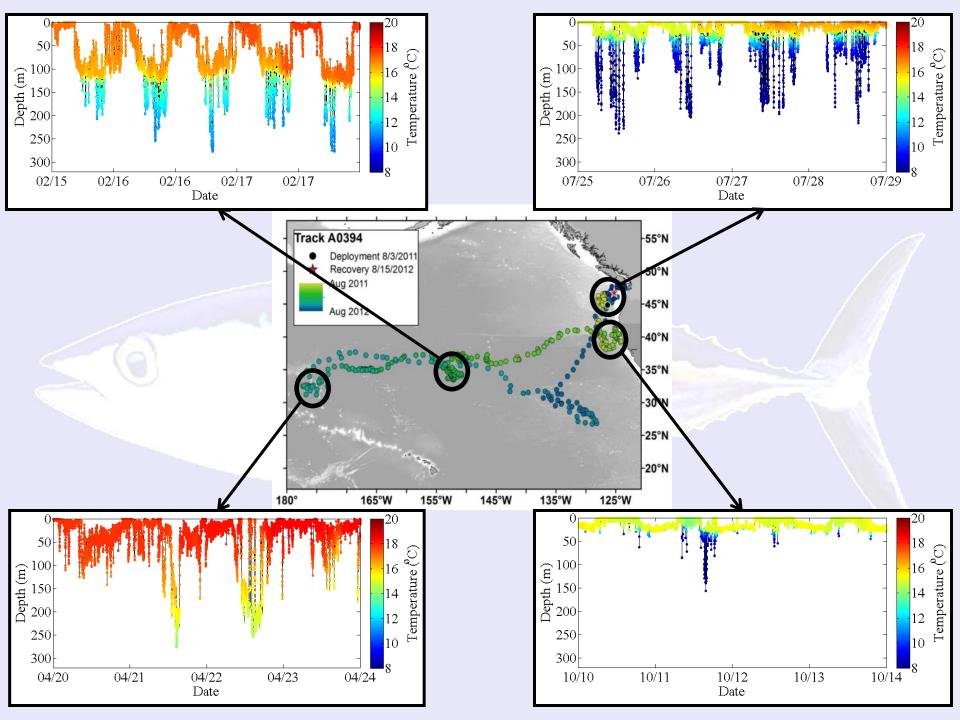
11 (+ 6 Dummy) Recovered

Recovery Rate: 3.43%



Two or more trips planned for 2013 to deploy 120


2012 Tagging Cruises


- August 17, 29, 30 and September 7, 8, 2012, Geof Walker Hawaii PAT tagging - 3 tags deployed
- October 5-12, 2012, F/V Royal Dawn 56 tags deployed
- November 1-7, 2012, F/V Royal Dawn 25 tags deployed

Movements: 20 fish, 5 migratory patterns Site Specific Behavior in Focal Areas

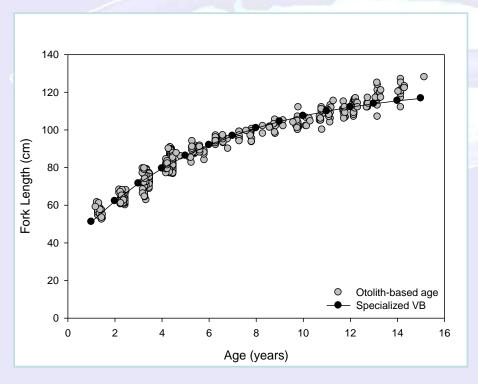
2012 Recovery: Tagged aboard Royal Dawn; Recovered by Randy Ratliff aboard Rampage

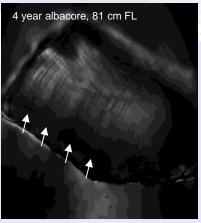
Biological Sampling of Whole Fish

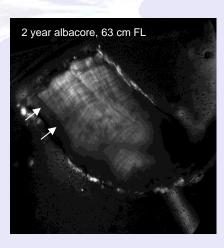
Studies aim to address:

- Age and growth otoliths, dorsal spines, scales, vertebrae
- Foraging ecology stomach analysis and liver, heart, muscle tissues
- Maturity and reproductive state gonads
- Stock structure and migration patterns
 - DNA, otoliths, tissues

- In 2012, ~50 albacore were collected in the north
- Fish peduncle tags and data forms were distributed to cooperating vessels
- Samples compared/combined with albacore collected on the southern sportfishing grounds and from Hawaii

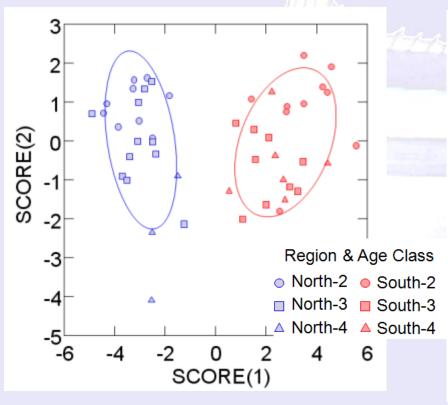


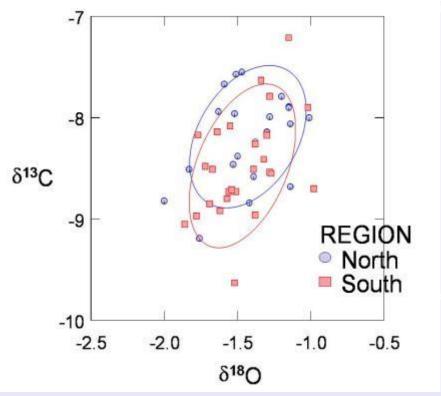



Fish Sample Number	Date (MM/DDYYYY)	Time of Day	GPS Location (DD°MM' DDD°MM')	Fork Length (CM)	Gear Type (balt or Troll)
			45.34		
191	09/29/2010	1200	127,49	52	Bait
192	1		45.34		
	09/29/2010	1200	127.49	54	32:
193	1		45.08		
	09/29/2010	1800	128.08	56	ふっさ
194			45.08		
	09/29/290	1800	128.08	56	Bair
195			45.02		
	07/30/2010	1000	128.00	60	BaiT
196			45.02		
	09/30/2010	1000	28.02	41	BLIT
197			45.02		525 757
	09/30/200	1000	128:02	60	BeiT
198			45.11		
	0/01/2010	1350	125.05	66	Brit
199			45-11		
	10/01/200	1350	125.05	62	BZIT
200			45.11		
	10/01/2010	1350	125.05	60	3217

Age and Growth

Otolith ageing helped define new growth curve.
 Samples combined with some collected in Japan and Hawaii (n=486). The paper was submitted in February 2013 and is in review.





Recent Otolith Chemistry Results

Whole otolith microchemistry points toward stock separation in EPO during first 4 years. Otolith core chemistry suggests overlapping natal origins.

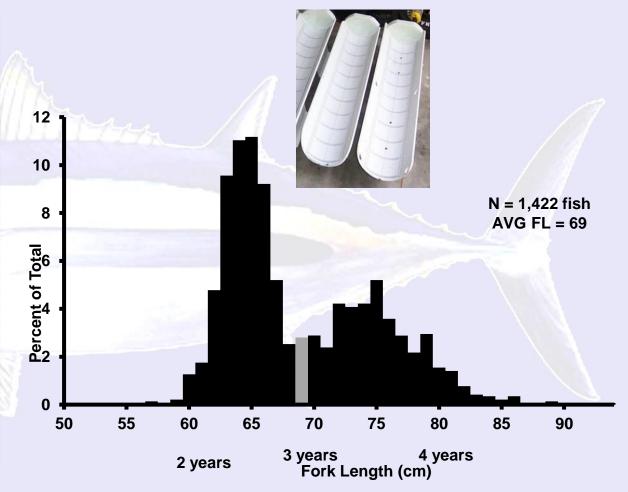
100% correct classification success by region for whole otoliths.

Core chemistry suggests no difference.

Electronic Logbooks

http://swfsc.noaa.gov/uploadedFiles/Divisions/FRD/Large_Pelagics/Albacore/albeloginstall.zip

- 13 users in 2012 covering 70 trips; 10 users in 2011 covering 70 trips; 8 users and 47 trips in 2010
- Total 1971 trips from 484 vessels (3.5% e-logs)
- Few new users each year
- Benefits: easier recording; fewer mistakes; better data; cheaper management costs
- Value-added items can be created from user input
- An upgraded program is way overdue and in the works.
- E-logs are being accepted in lieu of the signed paper logs



Contact John Childers
(john.childers@noaa.gov) to participate
in the electronic logbook program

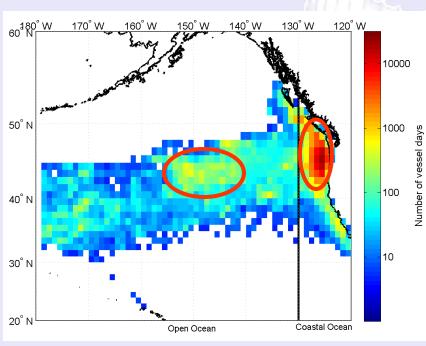
Onboard Length Sampling

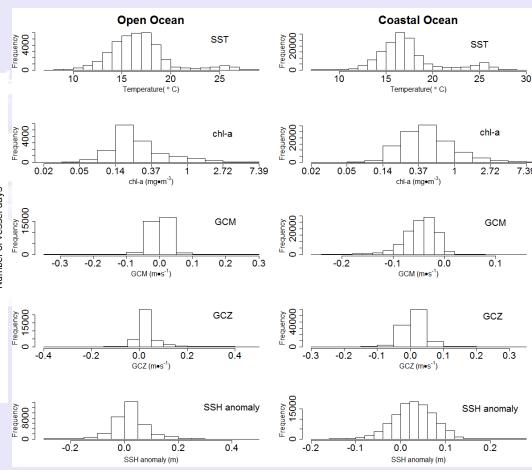
2012: F/Vs Hans Halvor and Roggy submitted measurements

YEAR	VESSEL	Number Measured
2007	CAPRICCIO	100
	HANS HALVOR	285
	HOLLY H	278
	SUKI	71
2008	BILLIE MARIE II	448
	CAPRICCIO	100
	HANS HALVOR	1,147
	HOLLY H	279
	ROGGY	180
2009	CAPRICCIO	150
	LYDOREIN	40
	NICOLE MARIE	222
	ROGGY	170
	STEEL FIN II	170
2010	CAPRICCIO	150
	HANS HALVOR	306
	LYDOREIN	23
	NEDIAN	290
	ROGGY	240
2011	HANS HALVOR	1,769
	ROGGY	170
2012	HANS HALVOR	1,222
	ROGGY	200

 Measurements are especially needed early and late in the season, and near the outskirts of the fishery

FATE Project Update


- Objective: to develop a quantitative predictive model of the influence of environmental variables (SST, chlorophyll-a, currents, etc.) on albacore distribution
- Preliminary results presented at ISC ALBWG meeting



Fishery and Environmental Information

Log(CPUE+const) ~ Year, Month, Longitude, Latitude, SST, SSH anomaly, Meridional Geostrophic Currents, Zonal Geostrophic

Currents, Chlorophyll a

- The model was able to catch the seasonal and interannual variation and spatial distribution of albacore tuna and overall the model explains 1/3 (open ocean) or 1/5 (coastal ocean) of the total variance. Most of the variance is temporal-spatial dependent.
- Key Environmental factors
 - In the open ocean, geostrophic currents and SSH anomaly are important factors.
 - In the coastal ocean, chl-a concentration is the leading factor, followed by SSH anomaly.